Robust Segmentation and Anatomical Labeling of the Airway Tree from Thoracic CT Scans

نویسندگان

  • Bram van Ginneken
  • Wouter Baggerman
  • Eva M. van Rikxoort
چکیده

A method for automatic extraction and labeling of the airway tree from thoracic CT scans is presented and extensively evaluated on 150 scans of clinical dose, low dose and ultra-low dose data, in inspiration and expiration from both relatively healthy and severely ill patients. The method uses adaptive thresholds while growing the airways and it is shown that this strategy leads to a substantial increase in the number, total length and number of correctly labeled airways extracted. From inspiration scans on average 170 branches are found, from expiration scans 59.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrathoracic Airway Tree Segmentation from CT Images Using a Fuzzy Connectivity Method

Introduction: Virtual bronchoscopy is a reliable and efficient diagnostic method for primary symptoms of lung cancer. The segmentation of airways from CT images is a critical step for numerous virtual bronchoscopy applications. Materials and Methods: To overcome the limitations of the fuzzy connectedness method, the proposed technique, called fuzzy connectivity - fuzzy C-mean (FC-FCM), utilized...

متن کامل

Automatic segmentation of the airway tree from thoracic CT scans using a multi-threshold approach

A method for automatic extraction of the airway tree from thoracic CT scans is presented that uses adaptive thresholds while growing the airways. The method is evaluated on 20 volumetric chest CT scans provided by the Extraction of Airways from CT 2009 (EXACT09) challenge. The scans were acquired at different sites, using several different scanners, scanning protocols, and reconstruction parame...

متن کامل

Segmentation of the Airway Tree from Chest CT using Local Volume of Interest

Lung diseases such as COPD and asthma affect airway morphology. Automated segmentation is an essential first step toward the analysis of airways. We propose a fully-automated algorithm to segment the airway tree from chest CT scans. The proposed algorithm requires no manual intervention and uses a 3D region growing based method and allows for accurate detection of leakage by growing regions wit...

متن کامل

Pulmonary Vascular Tree Segmentation from Contrast-Enhanced CT Images

We present a pulmonary vessel segmentation algorithm, which is fast, fully automatic and robust. It uses a coarse segmentation of the airway tree and a left and right lung labeled volume to restrict a vessel enhancement filter, based on an offset medialness function, to the lungs. We show the application of our algorithm on contrast-enhanced CT images, where we derive a clinical parameter to de...

متن کامل

Automated segmentation of pulmonary structures in thoracic computed tomography scans: a review.

Computed tomography (CT) is the modality of choice for imaging the lungs in vivo. Sub-millimeter isotropic images of the lungs can be obtained within seconds, allowing the detection of small lesions and detailed analysis of disease processes. The high resolution of thoracic CT and the high prevalence of lung diseases require a high degree of automation in the analysis pipeline. The automated se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 11 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2008